22 research outputs found

    Investigations of background due to secondary electron emission in the KATRIN-experiment

    Get PDF
    KATRIN will determine the effective mass of the electron anti-neutrino with a sensitivity of 200 meV (90% C.L.) by scanning the tritium-beta-spectrum close to the endpoint energy with unprecedented precision. The focus of this work lies on the detailed investigation of one of two main background sources of the experiment: the emission of secondary electrons from the large inner surface of the stainless steel vessel which are caused caused by cosmic ray muons and environmental radiation

    A Low-Cost, Wireless, Multi-Channel Deep Brain Stimulation System for Rodents

    Get PDF
    We present a small (43mm x 24mm x 15mm), off-the-shelf wireless neurostimulator for rodent deep brain stimulation research. Our device enables researchers to wirelessly configure stimulator settings, such as amplitude, pulse width, channel selection, and frequency, via a phone app. The system uses impedance-independent current-mode stimulation and steers current to a selected channel. In addition to monophasic and biphasic stimulation, the system also supports arbitrary waveform stimulation using pre-stored lookup tables. The system uses a configurable grounding phase to clear residual charge and a stimulation compliance monitor to ensure safe operation. The compliance monitor wirelessly reports the current during stimulation, the amount of passive recharge current, and the DC voltage of the electrode interface. The 400mAh battery is easy to replace and can go over 40 hours between charges. The system can be built for less than $50 using easy-to-source components to support inexpensive, highly-parallel research applications

    Kassiopeia: A Modern, Extensible C++ Particle Tracking Package

    Full text link
    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease of use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occuring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopei

    The Modified Flavonol Glycosylation Profile in the Arabidopsis rol1 Mutants Results in Alterations in Plant Growth and Cell Shape Formation[W]

    No full text
    Flavonoids are secondary metabolites known to modulate plant growth and development. A primary function of flavonols, a subgroup of flavonoids, is thought to be the modification of auxin fluxes in the plant. Flavonols in the cell are glycosylated, and the repressor of lrx1 (rol1) mutants of Arabidopsis thaliana, affected in rhamnose biosynthesis, have a modified flavonol glycosylation profile. A detailed analysis of the rol1-2 allele revealed hyponastic growth, aberrant pavement cell and stomatal morphology in cotyledons, and defective trichome formation. Blocking flavonoid biosynthesis suppresses the rol1-2 shoot phenotype, suggesting that it is induced by the modified flavonol profile. The hyponastic cotyledons of rol1-2 are likely to be the result of a flavonol-induced increase in auxin concentration. By contrast, the pavement cell, stomata, and trichome formation phenotypes appear not to be induced by the modified auxin distribution. Together, these results suggest that changes in the composition of flavonols can have a tremendous impact on plant development through both auxin-induced and auxin-independent processes

    Kassiopeia: a modern, extensible C++ particle tracking package

    No full text
    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.United States. Department of Energy. Office of Nuclear Physics (Award FG02-97ER41041)United States. Department of Energy. Office of Nuclear Physics (Award DE-FG02-06ER-41420
    corecore